Современному человеку нравится быть мобильным и иметь при себе различные высокотехнологичные гаджеты (англ. gadget - устройство), облегчающие жизнь, да что там скрывать, делающие ее более насыщенной и интересной. И появились-то они всего за 10-15 лет! Миниатюрные, легкие, удобные, цифровые… Всего этого гаджеты достигли благодаря новым микропроцессорным технологиям, но все же больший вклад был сделан одной замечательной технологией хранения данных, о которой сегодня мы и будем говорить. Итак, флэш-память.

Бытует мнение, что название FLASH применительно к типу памяти переводится как «вспышка». На самом деле это не совсем так. Одна из версий его появления говорит о том, что впервые в 1989-90 году компания Toshiba употребила слово Flash в контексте «быстрый, мгновенный» при описании своих новых микросхем. Вообще, изобретателем считается Intel, представившая в 1988 году флэш-память с архитектурой NOR. Годом позже Toshiba разработала архитектуру NAND, которая и сегодня используется наряду с той же NOR в микросхемах флэш. Собственно, сейчас можно сказать, что это два различных вида памяти, имеющие в чем-то схожую технологию производства. В этой статье мы попытаемся понять их устройство, принцип работы, а также рассмотрим различные варианты практического использования.

NOR

С помощью нее осуществляется преобразование входных напряжений в выходные, соответствующие «0» и «1». Они необходимы, потому что для чтения/записи данных в ячейке памяти используются различные напряжения. Схема ячейки приведена на рисунке ниже.

Она характерна для большинства флэш-чипов и представляет из себя транзистор с двумя изолированными затворами: управляющим (control) и плавающим (floating). Важной особенностью последнего является способность удерживать электроны, то есть заряд. Также в ячейке имеются так называемые «сток» и «исток». При программировании между ними, вследствие воздействия положительного поля на управляющем затворе, создается канал - поток электронов. Некоторые из электронов, благодаря наличию большей энергии, преодолевают слой изолятора и попадают на плавающий затвор. На нем они могут храниться в течение нескольких лет. Определенный диапазон количества электронов (заряда) на плавающем затворе соответствует логической единице, а все, что больше его, - нулю. При чтении эти состояния распознаются путем измерения порогового напряжения транзистора. Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток. В технологиях различных производителей этот принцип работы может отличаться по способу подачи тока и чтению данных из ячейки. Хочу также обратить ваше внимание на то, что в структуре флэш-памяти для хранения 1 бита информации задействуется только один элемент (транзистор), в то время как в энергозависимых типах памяти для этого требуется несколько транзисторов и конденсатор. Это позволяет существенно уменьшить размеры выпускаемых микросхем, упростить технологический процесс, а, следовательно, и снизить себестоимость. Но и один бит далеко не предел: Intel уже выпускает память StrataFlash , каждая ячейка которой может хранить по 2 бита информации. Кроме того, существуют пробные образцы, с 4-х и даже 9-битными ячейками! В такой памяти используются технология многоуровневых ячеек. Они имеют обычную структуру, а отличие заключается в том, что заряд их делится на несколько уровней, каждому из которых в соответствие ставится определенная комбинация бит. Теоретически прочитать/записать можно и более 4-х бит, однако, на практике возникают проблемы с устранением шумов и с постепенной утечкой электронов при продолжительном хранении. Вообще, у существующих сегодня микросхем памяти для ячеек характерно время хранения информации, измеряемое годами и число циклов чтения/записи - от 100 тысяч до нескольких миллионов. Из недостатков, в частности, у флэш-памяти с архитектурой NOR стоит отметить плохую масштабируемость: нельзя уменьшать площадь чипов путем уменьшения размеров транзисторов. Эта ситуация связана со способом организации матрицы ячеек: в NOR архитектуре к каждому транзистору надо подвести индивидуальный контакт. Гораздо лучше в этом плане обстоят дела у флэш-памяти с архитектурой NAND.

NAND

Устройство и принцип работы ячеек у нее такой же, как и у NOR. Хотя, кроме логики, все-таки есть еще одно важное отличие - архитектура размещения ячеек и их контактов. В отличие от вышеописанного случая, здесь имеется контактная матрица, в пересечениях строк и столбцов которой располагаются транзисторы. Это сравнимо с пассивной матрицей в дисплеях:) (а NOR - с активной TFT). В случае с памятью такая организация несколько лучше - площадь микросхемы можно значительно уменьшить за счет размеров ячеек. Недостатки (куда уж без них) заключаются в более низкой по сравнению с NOR скорости работы в операциях побайтового произвольного доступа.

Существуют еще и такие архитектуры как: DiNOR (Mitsubishi), superAND (Hitachi) и пр. Принципиально нового ничего они не представляют, а лишь комбинируют лучшие свойства NAND и NOR.

И все же, как бы там ни было, NOR и NAND на сегодняшний день выпускаются на равных и практически не конкурируют между собой, потому как в силу своих качеств находят применение в разных областях хранения данных. Об этом и пойдет далее речь…

Где нужна память…

Сфера применения какого-либо типа флэш-памяти зависит в первую очередь от его скоростных показателей и надежности хранения информации. Адресное пространство NOR-памяти позволяет работать с отдельными байтами или словами (2 байта). В NAND ячейки группируются в небольшие блоки (по аналогии с кластером жесткого диска). Из этого следует, что при последовательном чтении и записи преимущество по скорости будет у NAND. Однако с другой стороны NAND значительно проигрывает в операциях с произвольным доступом и не позволяет напрямую работать с байтами информации. К примеру, для изменения одного байта требуется:

  1. считать в буфер блок информации, в котором он находится
  2. в буфере изменить нужный байт
  3. записать блок с измененным байтом обратно

Если еще ко времени выполнения перечисленных операций прибавить задержки на выборку блока и на доступ, то получим отнюдь неконкурентоспособные с NOR показатели (отмечу, что именно для случая побайтовой записи). Другое дело последовательная запись/чтение - здесь NAND наоборот показывает значительно более высокие скоростные характеристики. Поэтому, а также из-за возможностей увеличения объема памяти без увеличения размеров микросхемы, NAND-флэш нашел применение в качестве хранителя больших объемов информации и для ее переноса. Наиболее распространенные сейчас устройства, основанные на этом типе памяти, это флэшдрайвы и карты памяти. Что касается NOR-флэша, то чипы с такой организацией используются в качестве хранителей программного кода (BIOS, RAM карманных компьютеров, мобилок и т. п.), иногда реализовываются в виде интегрированных решений (ОЗУ, ПЗУ и процессор на одной мини-плате, а то и в одном чипе). Удачный пример такого использования - проект Gumstix: одноплатный компьютер размером с пластинку жвачки. Именно NOR-чипы обеспечивают требуемый для таких случаев уровень надежности хранения информации и более гибкие возможности по работе с ней. Объем NOR-флэш обычно измеряется единицами мегабайт и редко переваливает за десятки.

И будет флэш…

Безусловно, флэш - перспективная технология. Однако, несмотря на высокие темпы роста объемов производства, устройства хранения данных, основанные на ней, еще достаточно дороги, чтобы конкурировать с жесткими дисками для настольных систем или ноутбуков. В основном, сейчас сфера господства флэш-памяти ограничивается мобильными устройствами. Как вы понимаете, этот сегмент информационных технологий не так уж и мал. Кроме того, со слов производителей, на нем экспансия флэш не остановится. Итак, какие же основные тенденции развития имеют место в этой области.

Во-первых, как уже упоминалось выше, большое внимание уделяется интегрированным решениям. Причем проекты вроде Gumstix лишь промежуточные этапы на пути к реализации всех функций в одной микросхеме.

Пока что, так называемые on-chip (single-chip) системы представляют собой комбинации в одном чипе флэш-памяти с контроллером, процессором, SDRAM или же со специальным ПО. Так, например, Intel StrataFlash в сочетании с ПО Persistent Storage Manager (PSM) дает возможность использовать объем памяти одновременно как для хранения данных, так и для выполнения программного кода. PSM по сути дела является файловой системой, поддерживающейся ОС Windows CE 2.1 и выше. Все это направлено на снижение количества компонентов и уменьшение габаритов мобильных устройств с увеличением их функциональности и производительности. Не менее интересна и актуальна разработка компании Renesas - флэш-память типа superAND с встроенными функциями управления. До этого момента они реализовывались отдельно в контроллере, а теперь интегрированы прямо в чип. Это функции контроля бэд-секторов, коррекции ошибок (ECC - error check and correct), равномерности износа ячеек (wear leveling). Поскольку в тех или иных вариациях они присутствуют в большинстве других брендовых прошивок внешних контроллеров, давайте вкратце их рассмотрим. Начнем с бэд-секторов. Да, во флэш-памяти они тоже встречаются: уже с конвейера сходят чипы, имеющие в среднем до 2% нерабочих ячеек - это обычная технологическая норма. Но со временем их количество может увеличиваться (окружающую среду в этом винить особо не стоит - электромагнитное, физическое (тряска и т. п.) влияние флэш-чипу не страшно). Поэтому, как и в жестких дисках, во флэш-памяти предусмотрен резервный объем. Если появляется плохой сектор, функция контроля подменяет его адрес в таблице размещения файлов адресом сектора из резервной области.


Собственно, выявлением бэдов занимается алгоритм ECC - он сравнивает записываемую информацию с реально записанной. Также в связи с ограниченным ресурсом ячеек (порядка нескольких миллионов циклов чтения/записи для каждой) важно наличие функции учета равномерности износа. Приведу такой редкий, но встречающийся случай: брелок с 32 Мбайт, из которых 30 Мбайт заняты, а на свободное место постоянно что-то записывается и удаляется. Получается, что одни ячейки простаивают, а другие интенсивно исчерпывают свой ресурс. Чтобы такого не было, в фирменных устройствах свободное пространство условно разбивается на участки, для каждого из которых осуществляется контроль и учет количества операций записи.

Еще более сложные конфигурации класса «все-в-одном» сейчас широко представлены такими компаниями как, например, Intel, Samsung, Hitachi и др. Их изделия представляют собой многофункциональные устройства, реализованные в одной лишь микросхеме (стандартно в ней имеется процессор, флэш-память и SDRAM). Ориентированы они на применение в мобильных устройствах, где важна высокая производительность при минимальных размерах и низком энергопотреблении. К таким относятся: PDA, смартфоны, телефоны для сетей 3G. Приведу пример подобных разработок - чип от Samsung, объединяющий в себе ARM-процессор (203 МГц), 256 Мбайт NAND памяти и 256 SDRAM. Он совместим с распространенными ОС: Windows CE, Palm OS, Symbian, Linux и имеет поддержку USB. Таким образом на его основе возможно создание многофункциональных мобильных устройств с низким энергопотреблением, способных работать с видео, звуком, голосом и прочими ресурсоемкими приложениями.

Другим направлением совершенствования флэш является уменьшение энергопотребления и размеров с одновременным увеличением объема и быстродействия памяти. В большей степени это касается микросхем с NOR архитектурой, поскольку с развитием мобильных компьютеров, поддерживающих работу в беспроводных сетях, именно NOR-флэш, благодаря небольшим размерам и малому энергопотреблению, станет универсальным решением для хранения и выполнения программного кода. В скором времени в серийное производство будут запущены 512 Мбит чипы NOR той же Renesas. Напряжение питания их составит 3,3 В (напомню, хранить информацию они могут и без подачи тока), а скорость в операциях записи - 4 Мбайт/сек. В то же время Intel уже представляет свою разработку StrataFlash Wireless Memory System (LV18/LV30) - универсальную систему флэш-памяти для беспроводных технологий. Объем ее памяти может достигать 1 Гбит, а рабочее напряжение равно 1.8 В. Технология изготовления чипов - 0,13 нм, в планах переход на 0,09 нм техпроцесс. Среди инноваций данной компании также стоит отметить организацию пакетного режима работы с NOR-памятью. Он позволяет считывать информацию не по одному байту, а блоками - по 16 байт: с использованием 66 МГц шины данных скорость обмена информацией с процессором достигает 92 Мбит/с!

Что ж, как видите, технология развивается стремительно. Вполне возможно, что к моменту выхода статьи появится еще что-нибудь новенькое. Так что, если что - не взыщите:) Надеюсь, материал был вам интересен.

Потребность в энергонезависимой флэш-памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе флэш-памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в флэш-памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, флэш-память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR и NAND. Структура NOR (рис.1) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис.2) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

рис.1 Структура NOR рис.2 Структура NAND

В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR. Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-флэш лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-флэш ниже, чем в других технологиях флэш-памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Основные отличия в параметрах флэш-памяти, изготовленной по различным технологиям, приведены в таблице 1.

Таблица 1. Сравнительные характеристики модулей памяти на основе ячеек NAND и NOR

Параметр NAND NOR
Емкость ~ 1 Гбит (2 кристалла в корпусе) ~ 128 Мбит
Напряжение питания 2.7 – 3.6 В 2.3 – 3.6 В
Ввод/вывод х8 / х16 х8 / х16
Время доступа 50 нС (цикл последовательного доступа)
25 мкС (случайный доступ)
70 нС (30 пФ, 2.3 В)
65 нС (30 пФ, 2.7 В)
Скорость программирования (типовая) -
200 мкС / 512 байт
8 мкС / байт
4.1 мС / 512 байт
Скорость стирания (типовая) 2 мС / блок (16 кБ) 700 мС / блок
Совокупная скорость
программирования и стирания (типовая)
33.6 мС / 64 кБ 1.23 сек / блок (основной: 64 кБ)

Ведущим лидером в производстве NAND-флэш микросхем является фирма Hynix. Она производит несколько разновидностей микросхем памяти, различающихся по следующим ключевым параметрам:

  • емкость (256 Мбит, 512 Мбит и 1 Гбит);
  • ширина шины, 8 или 16 бит (х8, х16);
  • напряжение питания: от 2.7 до 3.6 В (3.3 В устройства) или от 1.7 до 1.95 В (1.8 В устройства);
  • размер страницы: в х8 устройствах (512 + 16 запасных) байт, в 16х – (256 + 8 запасных) слов;
  • размер блока: в х8 устройствах (16 К + 512 запасных) байт, в 16х – (8 К + 256 запасных) слов;
  • время доступа: случайный доступ 12 мкС, последовательный 50 нС;
  • время программирования страницы 200 мкС;

Все микросхемы NAND-флэш от Hynix характеризуются типичным временем стирания блока 2 мС, имеют аппаратную защиту данных при переходных процессах по питанию и позволяют выполнять 100000 циклов записи/стирания. Гарантированное время сохранности данных составляет 10 лет. Важной особенностью микросхем памяти Hynix является их повыводная совместимость вне зависимости от емкости. Это позволяет очень легко улучшать потребительские характеристики конечного изделия. В таблице 2 приведены базовые параметры всех микросхем NAND-флэш фирмы Hynix.

Таблица 2. Сравнительный перечень микросхем NAND-флэш фирмы Hynix

Об"ем Тип Организаця Напряжение
питания
Диапазон
рабочих
температур*
Сккорость
(ns)
Корпус
256Mbit 32Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
32Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
16Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
16Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
512Mbit 64Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
64Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
32Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
32Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
1Gb 128Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
128Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
128Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
128Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
64Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA

* - Диапазоны температур
C - Коммерческий диапазон рабочих температур 0...+70°C
E - Расширенный диапазон рабочих температур -25...+85°C
I - Индустриальный диапазон рабочих температур -40...+85°C

Более детально особенности микросхем памяти Hynix можно рассмотреть на примере кристаллов серии HY27xx(08/16)1G1M. На рис.3 показана внутренняя структура и назначение выводов этих приборов. Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Для увеличения жизненного цикла NAND-флэш устройств настоятельно рекомендуется применять код корректировки ошибок (ECC). Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.


Рис.3 Внутренняя организация микросхем NAND-флэш Hynix

Для оптимальной работы с дефектными блоками доступна команда «Copy Back». Если программирование какой-либо страницы оказалось неудачным, данные по этой команде могут быть записаны в другую страницу без их повторной отправки.

Микросхемы памяти Hynix доступны в следующих корпусах:

  • 48-TSOP1 (12x20x1.2 мм) – рис.4;
  • 48-WSOP1 (12х12х0.7 мм)
  • 63-FBGA (8.5х15х1.2 мм, 6х8 массив шаровых контактов, 0.8 мм шаг)


Рис.4 NAND-флэш Hynix

Массив памяти NAND-структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис.5). Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC), программных флагов и идентификаторов негодных блоков (Bad Block) основной области. В устройствах х8 страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В устройствах х16 страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.


Рис.5 Организация массива NAND-памяти

NAND-флэш устройства со страницами 528 байт / 264 слова могут содержать негодные блоки, в которых может быть одна и более неработоспособных ячеек, надежность которых не гарантируется. Помимо этого, дополнительные негодные блоки могут появиться в ходе эксплуатации изделия. Информация о плохих блоках записывается в кристалл перед отправкой. Работа с такими блоками выполняется по процедуре, детально описанной в справочном руководстве по микросхемам памяти Hynix.

При работе с микросхемами памяти выполняются три основных действия: чтение (рис.6), запись (рис.7) и стирание (рис.8).

Процедура чтения данных


Рис.6 Диаграмма процедуры чтения

Процедуры чтения данных из NAND-памяти могут быть трех типов: случайное чтение, постраничное чтение и последовательное построчное чтение. При случайном чтении для получения одной порции данных нужна отдельная команда.

Чтение страницы выполняется после доступа в режиме случайного чтения, при котором содержимое страницы переносится в буфер страницы. О завершении переноса информирует высокий уровень на выход «Чтение/занят». Данные могут быть считаны последовательно (от выбранного адреса столбца до последнего столбца) по импульсу сигнала на Read Enable (RE).

Режим последовательного построчного чтения активен, если на входе Chip Enable (CE) остается низкий уровень, а по входу Read Enable поступают импульсы после прочтения последнего столбца страницы. В этом случае следующая страница автоматически загружается в буфер страниц и операция чтения продолжается. Операция последовательного построчного чтения может использоваться только в пределах блока. Если блок изменяется, должна быть выполнена новая команда чтения.

Процедура записи данных


Рис.7 Диаграмма процедуры записи

Стандартной процедурой записи данных является постраничная запись. Главная область массива памяти программируется страницами, однако допустимо программирование части страницы с необходимым количеством байт (от 1 до 528) или слов (от 1 до 264). Максимальное число последовательных записей частей одной и той же страницы составляет не более одной в главной области и не более двух в резервной области. После превышения этих значений необходимо выполнить команду стирания блока перед любой последующей операцией программирования этой страницы. Каждая операция программирования состоит из пяти шагов:

  1. Один цикл на шине необходим для настройки команды записи страницы.
  2. Четыре шинных цикла требуются для передачи адреса.
  3. Выдача данных на шину (до 528 байт / 264 слов) и загрузка в буфер страниц.
  4. Один цикл на шине необходим для выдачи команды подтверждения для старта контроллера PER.
  5. Выполнение контроллером PER записи данных в массив.

Процедура стирания блока


Рис.8 Диаграмма процедуры стирания

Операция стирания выполняется за один раз над одним блоком. В результате её работы все биты в указанном блоке устанавливаются в «1». Все предыдущие данные оказываются утерянными. Операция стирания состоит из трех шагов (рис.8):

  1. Один цикл шины необходим для установки команды стирания блока.
  2. Только три цикла шины нужны для задания адреса блока. Первый цикл (A0-A7) не требуется, поскольку верны только адреса с А14 по А26 (старшие адреса), А9-А13 игнорируются.
  3. Один цикл шины необходим для выдачи команды подтверждения для старта контроллера PER.

Помимо Hynix микросхемы NAND-памяти выпускаются еще несколькими производителями, среди которых весьма большую номенклатуру и объем продаж изделий имеет компания Samsung. Она производит две базовые линейки микросхем памяти NAND Flash и One NAND™. Модули памяти семейства One NAND™ представляют собой одиночный кристалл памяти со стандартным интерфейсом NOR-флэш, основанный на массиве ячеек NAND-флэш.

Ассортимент выпускаемых компанией Samsung изделий более широк, чем у Hynix. Представлены модули емкостью от 4 Мбит до 8 Гбит, работающие в коммерческом и индустриальном температурных диапазонах. Доступны как 8-ми, так и 16-разрядные модификации на разные диапазоны питающих напряжений: 1,65…1,95 В или 2,7…3,6 В. Выпускаемые Samsung изделия имеют развитые аппаратные возможности защиты данных: защиту от записи для BootRAM, защитный режим для Flash-массива и защиту от случайной записи при включении и выключении.

В остальном устройство микросхем памяти Hynix и изделий семейства NAND Flash от Samsung практически идентично. В этой ситуации предпочтительным для потребителя вариантом является продукция того производителя, рыночная стоимость изделий которого наиболее приемлема.

Высокое быстродействие при считывании последовательных потоков данных предопределяет широкую сферу применимости NAND-флэш. Весьма популярным и перспективным рынком для памяти такого типа является рынок твердотельных накопителей для шины USB. В таблице 3 отражены возможности производимых в настоящее время микросхем NAND-флэш применительно к этой сфере. Помимо этого, наиболее выгодным оказывается использование такой памяти в MP3-плеерах, цифровых фотоаппаратах, компьютерах - наладонниках и в другом подобном оборудовании.

Таблица 3. Преимущества и недостатки использования NAND-флэш в твердотельных накопителях

Категория Содержимое
Возможности Преимущества Хранилище данных, которые могут быть переданы через USB
Малый размер, легкость создания портативных устройств
Нет ограничений в объеме памяти
Безопасное хранение данных, физически более надежное в сравнении в HDD
Поддержка функции «горячей» установки Plug&Play
Быстрая скорость передачи:
USB 1.1: максимум до 12 Мбод, USB 2.0: максимум 480 Мбод
Превосходная совместимость со стандартизованным USB интерфейсом
Возможность питания от USB порта (500 мА, 4,5…5,5 В)
Недостатки Необходимость в программном обеспечении в операционной системе хост-контроллера
Необходимость в использовании чипсета USB-хоста
Высокая стоимость в сравнении с HDD сравнимой емкости
Емкость продукта От 16 Мбит до 8 Гбит
Скорость передачи Запись До 13 Мб/с под USB 2.0 у карты CF от SanDisk
Чтение До 15 Мб/с под USB 2.0 у SanDisk
Применение ПК (настольные, переносные), DVC,PDA, сотовые телефоны и пр.
Ведущие производители, использующие флэш-память M-Systems, Lexar Media, SanDisk и др.
Ассоциации USB-IF (форум конструкторов USB), UTMA (ассоциация универсальной транспортабельной памяти)
Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям ( , , , ). Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование. Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.

Теоретическая часть

Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…
Какая память бывает?
На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах .

Что такое flash-память и какой она бывает (NOR и NAND)?
Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память ( тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.


Схематическое представление транзистора с плавающим затвором.

Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано . Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

NB: «практически» - ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:


Устройство ячейки RAM.

Опять-таки на ixbt есть неплохая , посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да , но всё-таки…

Часть практическая

Flash
Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:


Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти.

Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы ). К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.


Корпус кварцевого генератора

Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:


Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита

А вот и первая важная деталь флешки – контроллер:


Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий

Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать.

После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:


«Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)

Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый» < 2 диаметров человеческого волоса, так что всё в мире относительно:


СЭМ-изображения контактов, питающих чип памяти

Если говорить о самой памяти, то тут нас тоже ждёт успех. Удалось отснять отдельные блоки, границы которых выделены стрелочками. Глядя на изображение с максимальным увеличением, постарайтесь напрячь взгляд, этот контраст реально трудно различим, но он есть на изображении (для наглядности я отметил отдельную ячейку линиями):


Ячейки памяти 1. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

Мне самому сначала это показалось как артефакт изображения, но обработав все фото дома, я понял, что это либо вытянутые по вертикальной оси управляющие затворы при SLC-ячейке, либо это несколько ячеек, собранных в MLC. Хоть я и упомянул MLC выше, но всё-таки это вопрос. Для справки, «толщина» ячейки (т.е. расстояние между двумя светлыми точками на нижнем изображении) около 60 нм.

Чтобы не лукавить – вот аналогичные фото с другой половинки флешки. Полностью аналогичная картина:


Ячейки памяти 2. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

Конечно, сам чип – это не просто набор таких ячеек памяти, внутри него есть ещё какие-то структуры, принадлежность которых мне определить не удалось:


Другие структуры внутри чипов NAND памяти

DRAM
Всю плату SO-DIMM от Samsung я, конечно же, не стал распиливать, лишь с помощью строительного фена «отсоединил» один из модулей памяти. Стоит отметить, что тут пригодился один из советов, предложенных ещё после первой публикации – распилить под углом. Поэтому, для детального погружения в увиденное необходимо учитывать этот факт, тем более что распил под 45 градусов позволил ещё получить как бы «томографические» срезы конденсатора.

Однако по традиции начнём с контактов. Приятно было увидеть, как выглядит «скол» BGA и что собой представляет сама пайка:


«Скол» BGA-пайки

А вот и второй раз пора кричать: «Язь!», так как удалось увидеть отдельные твердотельные конденсаторы – концентрические круги на изображении, отмеченные стрелочками. Именно они хранят наши данные во время работы компьютера в виде заряда на своих обкладках. Судя по фотографиям размеры такого конденсатора составляют около 300 нм в ширину и около 100 нм в толщину.

Из-за того, что чип разрезан под углом, одни конденсаторы рассечены аккуратно по середине, у других же срезаны только «бока»:


DRAM память во всей красе

Если кто-то сомневается в том, что эти структуры и есть конденсаторы, то можно посмотреть более «профессиональное» фото (правда без масштабной метки).

Единственный момент, который меня смутил, что конденсаторы расположены в 2 ряда (левое нижнее фото), т.е. получается, что на 1 ячейку приходится 2 бита информации. Как уже было сказано выше, информация по мультибитовой записи имеется, но насколько эта технология применима и используется в современной промышленности – остаётся для меня под вопросом.

Конечно, кроме самих ячеек памяти внутри модуля есть ещё и какие-то вспомогательные структуры, о предназначении которых я могу только догадываться:


Другие структуры внутри чипа DRAM-памяти

Послесловие

Помимо тех ссылок, что раскиданы по тексту, на мой взгляд, довольно интересен данный обзор (пусть и от 1997 года), сам сайт (и фотогалерея, и chip-art, и патенты, и много-много всего) и данная контора , которая фактически занимается реверс-инжинирингом.

К сожалению, большого количества видео на тему производства Flash и RAM найти не удалось, поэтому довольствоваться придётся лишь сборкой USB-Flash-накопителей:

P.S.: Ещё раз всех с наступающим Новым Годом чёрного водяного дракона!!!
Странно получается: статью про Flash хотел написать одной из первых, но судьба распорядилась иначе. Скрестив пальцы, будем надеяться, что последующие, как минимум 2, статьи (про биообъекты и дисплеи) увидят свет в начале 2012 года. А пока затравка - углеродный скотч:


Углеродный скотч, на котором были закреплены исследуемые образцы. Думаю, что и обычный скотч выглядит похожим образом

Иногда при разработке устройства возникает потребность сохранять какие-либо данные в энергонезависимую память. В таких случаях обычно используют внутреннюю EEPROM микроконтроллера. Если её недостаточно, то как правило применяются внешние микросхемы EEPROM из серии 24lxx. Микросхемы этой серии очень популярны. Чаще всего их можно встретить в старых мобильных телефонах, некоторых материнских платах, картриджах от принтеров да еще много где. Цена данных микросхем тоже очень привлекательная. Например 24LC16 у нас стоит 11 рублей.
Данная микросхема выпускается в различных корпусах, самые популярные из которых это DIP и SOIC. Микросхема имеет следующую распиновку:

Как видите выводов совсем немного. Итак попробуем разобраться для что к чему.
A0, A1, A2 — в данной микросхеме не используются. Их можно подсоединить к земле или к плюсу питания. В некоторых других микросхемах серии 24lxx, этими выводами можно задавать адрес микросхемы, для того чтобы можно было подсоединить на одну шину i2c аж сразу 8 микрух памяти.
Vss — земля.
SDA — линия данных
SCL — линия тактовых импульсов
WP — Защита от записи. Когда на данном выводе логический 0, то запись в память разрешена. Если подать логическую единицу, то возможно только чтение из памяти.
Vcc — питание микросхемы. Согласно даташиту питается она напряжением от 2.5 вольта до 5.5 вольта.

Подключение к контроллеру.
Подключить память к МК очень просто. Из обвязки потребуются только пара резисторов сопротивлением около 4.7 кОм.

Программное обеспечение

Для работы с памятью была разработана библиотека реализующая следующие функции:

i2c_init — настраивает скорость тактовых импульсов идущих по линии SCL.

Микросхема 24LC16 поддерживает частоту до 400 кГц. Рассчитать частоту можно так:

CPU Clock frequency — частота на которой работает микроконтроллер

TWBR — число записанное в одноименный регистр.

TWPS — предделитель. Значения предделителя задаются битами TWPS1 и TWPS0 в регистре TWSR

Для контроллера Atmega 32 справедлива такая таблица:

i2c_start — отсылает стартовую посылку

i2c_stop — отсылает стоповую посылку

i2c_send — отсылает байт

i2c_recive — принимает байт

i2c_recive_last — принимает последний байт. Отличие от предыдущей функции состоит в том, что когда байт принят, микроконтроллер не отсылает бит подтверждения. Если при приёме последнего байта использовать i2c_recive то линия SDA останется прижатой к земле.

Запись данных в микросхему памяти

Записывать данные можно как в произвольном порядке так и постранично. Поскольку на шине i2c могут быть сразу несколько устройств, то для того чтобы обратится к какому либо устройству нужно знать его семибитный адрес. Адрес микросхемы 24LC16 в двоичном виде выглядит так:

Биты A,B,C служат для выбора блока памяти. Блоков памяти в микросхеме 8 штук по 256 байт каждый. Соответственно биты ABC принимают значения от 000 до 111.

Для того чтоб записать в микросхему байт нужно выполнить следующую последовательность действий:

  1. Инициализировать интерфейс i2c
  2. Отослать стартовую посылку
  3. Отослать адрес микросхемы+адрес блока памяти
  4. Отослать адрес ячейки памяти в которую будет производится запись
  5. Отослать байт данных
  6. Отослать стоповую посылку

Пример: Нужно записать байт 0xFA по адресу 0x101 .

rcall i2c_init
rcall i2c_start
ldi temp,0b 1010 001 0 //Адрес микросхемы где:
// 1010 - адрес микросхемы
// 001 - адрес блока памяти (Ячейка 0x101 принадлежит блоку 1)
// 0
rcall i2c_send
ldi temp,1 //Адрес ячейки памяти. (блок 1, ячейка 1)
rcall i2c_send
ldi temp,0xFA //Загружаем в регистр байт который нужно записать
rcall i2c_send //Записываем байт
rcall i2c_stop

Записывать данные в память можно не только побайтно но и постранично. Размер страницы — 16 байт. Постараничная запись подразумевает следующее: Отправляем адрес нулевого байта нужной страницы и после этого 16 раз отправляем нужные данные. Счётчик адреса будет увеличивать на единицу автоматически. Если отправить данные в 17-й раз, то будет перезаписан нулевой байт, если отправить байт 18-й раз, то он затрет байт номер 1 итд.

Пример : Требуется записать первую страницу блока 0.

rcall i2c_init //Инициализируем интерфейс i2c
rcall i2c_start // Отправляем стартовую посылку
ldi temp,0b 1010 000 0 //Адрес микросхемы где:
// 1010 - адрес микросхемы
// 000 - адрес блока памяти (нас интересует нулевой блок)
// 0 - бит чтения/записи. 0 - запись, 1 - чтение
rcall i2c_send
ldi temp,16 //Адрес первой страницы
rcall i2c_send
ldi temp,0x01 //Загружаем в регистр байт номер 0
rcall i2c_send //Записываем байт
ldi temp,0x02 //Загружаем в регистр байт номер 1
rcall i2c_send //Записываем байт
/// тут пишем остальные байты.....
ldi temp,0x0E //Загружаем в регистр байт номер 14
rcall i2c_send //Записываем байт
ldi temp,0x0F //Загружаем в регистр байт номер 15
rcall i2c_send //Записываем байт
rcall i2c_stop //Отправляем стоповую посылку

Чтение данных из микросхемы
С записью вроде разобрались, теперь приступим к чтению. Чтобы прочитать байт нужно сделать следующее:

  1. Инициализировать интерфейс i2c (если он не инициализировался ранее)
  2. Отправить стартовую посылку
  3. Отправить адрес микросхемы и адрес блока памяти откуда будем читать
  4. Отправить адрес ячейки памяти
  5. Отправить стартовую посылку повторно
  6. Отправить адрес микросхемы и адрес блока памяти с битом «чтение»
  7. Получить байт
  8. Отправить стоповую посылку

rcall i2c_init //Инициализируем интерфейс i2c
rcall i2c_start // Отправляем стартовую посылку
ldi temp,0b1010 011 0 //Адрес микросхемы + адрес 3-го блока памяти.
//Бит чтение/запись по прежнему 0 !
rcall i2c_send
ldi temp,0x41 //Адрес ячейки памяти
rcall i2c_send
rcall i2c_start //Повторная отправка стартовой посылки
ldi temp,0b1010 011 1 //Адрес микросхемы+адрес блока памяти+бит чтения/записи стал 1
rcall i2c_send //теперь можно читать данные
rcall i2c_recive_last //Читаем байт. Первый и последний.
rcall i2c_stop //Отправляем стоповую посылку

Чтение может производится последовательно байт за байтом, т.е. просто вызывать i2c_recive столько сколько нужно. Команду увеличения адреса на единицу посылать не нужно. Переключать адреса блоков при последовательном чтении так же не нужно. Т.е. можно взять и разом прочитать всю микросхему без всяких проблем.

Библиотека для работы с i2c разрабатывалась и была испытана на микроконтроллере Atmega32. Я думаю что она будет работать на многих других контроллерах без каких либо изменений. Естественно в контроллере должна быть аппаратная поддержка i2c или как его еще называют TWI. Конечно реализовать i2c можно и программно, но я не стал заморачиваться да и не было нужды. Демонстрационный пример представляет собой программу которая записывает по первым 16 адресам байты от 0 до 15, а после записи выводит их в порт A. Наблюдать как это работает можно не только в живую но и в Proteus’е.

Ну и напоследок прикладываю осциллограмму:

Вот так выглядит шина i2c глазами моего :-)
Все вопросы и предложения жду в комментариях.

Микросхемы разного назначения применяются в составе электроники современной техники. Огромное многообразие такого рода компонентов дополняют микросхемы памяти. Этот вид радиодеталей (среди электронщиков и в народе) зачастую называют просто – чипы. Основное назначение чипов памяти – хранение определённой информации с возможностью внесения (записи), изменения (перезаписи) или полного удаления (стирания) программными средствами. Всеобщий интерес к чипам памяти понятен. Мастерам, знающим как программировать микросхемы памяти, открываются широкие просторы в области ремонта и настройки современных электронных устройств.

Микросхема памяти — это электронный компонент, внутренняя структура которого способна сохранять (запоминать) внесённые программы, какие-либо данные или одновременно то и другое.

По сути, загруженные в чип сведения представляют собой серию команд, состоящих из набора вычислительных единиц микропроцессора.

Следует отметить: чипы памяти всегда являются неотъемлемым дополнением микропроцессоров – управляющих микросхем. В свою очередь микропроцессор является основой электроники любой современной техники.

Набор электронных компонентов на плате современного электронного устройства. Где-то среди этой массы радиодеталей приютился компонент, способный запоминать информацию

Таким образом, микропроцессор управляет , а чип памяти хранит сведения, необходимые микропроцессору.

Программы или данные хранятся в чипе памяти как ряд чисел — нулей и единиц (биты). Один бит может быть представлен логическими нулем (0) либо единицей (1).

В единичном виде обработка битов видится сложной. Поэтому биты объединяются в группы. Шестнадцать бит составляют группу «слов», восемь бит составляют байт — «часть слова», четыре бита — «кусочек слова».

Программным термином для чипов, что используется чаще других, является байт. Это набор из восьми бит, который может принимать от 2 до 8 числовых вариаций, что в общей сложности даёт 256 различных значений.

Для представления байта используется шестнадцатеричная система счисления, где предусматривается использование 16 значений из двух групп:

  1. Цифровых (от 0 до 9).
  2. Символьных (от А до F).

Поэтому в комбинациях двух знаков шестнадцатеричной системы также укладываются 256 значений (от 00h до FFh). Конечный символ «h» указывает на принадлежность к шестнадцатеричным числам.

Организация микросхем (чипов) памяти

Для 8-битных чипов памяти (наиболее распространенный тип) биты объединяются в байты (8 бит) и сохраняются под определённым «адресом».

По назначенному адресу открывается доступ к байтам. Вывод восьми битов адреса доступа осуществляется через восемь портов данных.


Организация структуры запоминающего устройства. На первый взгляд сложный и непонятный алгоритм. Но при желании разобраться, понимание приходит быстро