AIDA64 – это многофункциональная программа для определения характеристик компьютера, проведения различных тестов, которые могут показать, насколько система работает стабильно, можно ли разогнать процессор и т.д. Является отличным решением для проведения теста на стабильность работы малопроизводительных систем.

Тест на стабильность системы подразумевает нагрузки на каждый её элемент (ЦП, ОЗУ, диски и т.д.). С его помощью можно обнаружить неисправность того или иного компонента и вовремя применить меры.

Если у вас слабый компьютер, то перед проведением теста нужно посмотреть, не перегревается ли процессор при обычной нагрузке. Нормальная температура для ядер процессора в обычной нагрузке составляет 40-45 градусов. Если температура выше, то рекомендуется либо отказаться от тестирования, либо проводить его с осторожностью.

Данные ограничения обусловлены тем, что во время теста, процессор испытывает повышенные нагрузки, из-за чего (при условии, что ЦП перегревается даже в режиме обычной работы) температуры могут достигать критических значений в 90 и более градусов, что уже опасно для целостности самого процессора, материнской платы и компонентов, расположенных рядом.

Тестирование системы

Для того, чтобы начать тест на стабильность в AIDA64, в верхнем меню найдите пункт «Сервис» (находится в левой части). Нажмите по нему и в выпавшем меню найдите «Тест на стабильность системы» .

Откроется отдельное окно, где будут находиться два графика, несколько пунктов на выбор и определённые кнопки в нижней панели. Обратите внимание на пункты, которые расположены сверху. Рассмотрим каждый из них подробнее:


Вы можете отметить их все, но в этом случае есть риск перегрузки системы, если та очень слабая. Перегрузка может повлечь за собой аварийную перезагрузку ПК, и это только в лучшем случае. При отметке сразу нескольких пунктов на графиках будет выводиться сразу несколько параметров, что делает работу с ними достаточно затруднительной, так как график будет засорён информацией.

Желательно изначально выбрать первые три пункта и провести тест по ним, а затем по последним двум. В этом случае будет меньше нагрузки на систему и графики будут более понятными. Однако если требуется полноценный тест системы, то придётся отметить все пункты.

Внизу расположены два графика. В первом показывается температура процессора. При помощи специальных пунктов можно просмотреть среднюю температуру по всему процессору или по отдельному ядру, также можно вывести все данные на один график. Второй график показывает процент нагрузки на процессор – CPU Usage . Ещё там есть такой пункт, как CPU Throttling . При нормальной работе системы показатели данного пункта не должны превышать 0%. Если идёт превышение, значит, нужно прекращать тестирование и искать проблему в процессоре. Если значение дойдёт до 100%, то программа сама завершит работу, но, скорее всего, компьютер к этому времени уже сам перезагрузится.

Над графиками имеется специальное меню, при помощи которого можно просмотреть другие графики, например, напряжение и частоту процессора. В разделе Statistics можно увидеть краткую сводку по каждому из компонентов.

Для начала теста отметьте элементы, которые нужно протестировать в верхней части экрана. После чего нажмите на «Start» в нижней левой части окна. На тестирование желательно выделять около 30 минут.

Во время теста в окне, расположенном напротив пунктов для выбора вариантов, можно видеть обнаруженные ошибки и время их обнаружения. Пока будет идти тест, посматривайте на графики. При повышении температуры и/или при возрастающем проценте CPU Throttling немедленно прекращайте тестирование.

Для завершения нажмите на кнопку «Stop» . Можете сохранить результаты при помощи «Save» . Если обнаружено более 5 ошибок, то значит с компьютером не всё в порядке и их нужно немедленно исправить. К каждой обнаруженной ошибке присваивается имя того теста, в ходе которого та была обнаружена, например, Stress CPU .

AIDA64 содержит несколько тестов, которые можно использовать для оценки производительности отдельных частей оборудования или системы в целом. Это синтетические тесты, то есть они могут оценить теоретическую максимальную производительность системы. Тесты пропускной способности памяти, центрального процессора или FPU-блоков основаны на многопотоковом механизме тестирования AIDA64, который поддерживает до 640 одновременных потоков обработки и 10 групп процессоров (начиная с версии AIDA64 Business 4.00). Данный механизм обеспечивает полную поддержку для мультипроцессоров (SMP), многоядерных и гиперпотоковых технологий.

Тестирование производительности кэша и дисков

AIDA64 предлагает также отдельные тесты для оценки пропускной способности считывания, записывания и копирования, а также задержки кэша процессора и системной памяти. Также существует отдельный тестовый модуль для оценки производительности накопительных устройств, в том числе жестких дисков (S)ATA или SCSI, RAID-массивов, оптических дисков, SSD-накопителей, USB-накопителей и карт памяти.

Тестирование производительности GPGPU

Данная тестовая панель, доступ к которой можно получить в разделе меню Сервис | Тест GPGPU, предлагает набор тестов производительности OpenCL GPGPU. Они разработаны для оценки вычислительной производительности GPGPU при помощи различных нагрузок OpenCL. Каждый отдельный тест можно выполнить максимум на 16 графических процессорах, включая процессоры AMD, Intel и NVIDIA, или их комбинации. Конечно же, полностью поддерживаются конфигурации CrossFire и SLI, а также dGPU и APU. В общем, данная функция позволяет протестировать производительность практически любого вычислительного устройства, которое представлено как графический процессор среди устройств OpenCL.

Кроме комплексных тестов производительности, AIDA64 предлагает специальные микротесты - их можно найти в разделе «Тесты» в меню «Страница». Благодаря исчерпывающей справочной базе данных результатов, результаты тестирования производительности можно сравнить с аналогичными показателями по другим конфигурациям. На данный момент доступны следующие микротесты:

Тестирование производительности памяти

Тесты производительности памяти оценивают максимально возможную пропускную способность при выполнении определенных операций (чтение, запись, копирование). Они написаны на языке ассемблера и максимально оптимизированы для всех популярных вариантов ядер процессоров AMD, Intel и VIA путем применения соответствующих расширений набора команд x86/x64, x87, MMX, MMX+, 3DNow!, SSE, SSE2, SSE4.1, AVX и AVX2.

Тест задержки памяти оценивает типичную задержку при считывании центральным процессором данных из системной памяти. Задержка памяти - это время для предоставления данных в регистре целочисленной арифметики центрального процессора после выдачи команды считывания.

CPU Queen

Этот простой целочисленный тест оценивает возможности предсказания ветвлений центрального процессора и ошибочного прогнозирования ветви. Он вычисляет решения для классической головоломки с восемью ферзями, размещенными на шахматной доске 10х10. Теоретически, при одинаковой тактовой частоте, процессор с более коротким конвейером и меньшими накладными расходами в случае ошибочного предположения о ветвлении может показать более высокие результаты теста. Например, если отключить гиперпотоковость, процессоры Pentium 4 на базе Intel Northwood получат более высокие баллы, чем центральные процессоры Intel Prescott, поскольку в первых присутствует 20-ступенчатый конвейер, а в последних - 31-ступенчатый. CPU Queen использует целочисленные оптимизации MMX, SSE2 и SSSE3.

CPU PhotoWorxx

Данный целочисленный тест оценивает производительность центрального процессора при помощи нескольких алгоритмов обработки двухмерных фотографий. Он выполняет следующие задачи c довольно крупных RGB-изображениях:

  • заполнение изображения пикселями случайно выбранного цвета;
  • поворот изображения на 90 градусов против часовой стрелки;
  • поворот изображения на 180 градусов;
  • дифференцирование изображения;
  • преобразование пространства цветов (используется, например, при преобразовании JPEG).

Тест, в основном, предназначен для блоков выполнения операций целочисленной арифметики SIMD-архитектуры центрального процессора и подсистем памяти. Тест CPU PhotoWorxx использует соответствующие расширения наборов команд x87, MMX, MMX+, 3DNow!, 3DNow!+, SSE, SSE2, SSSE3, SSE4.1, SSE4A, AVX, AVX2, и поддерживает NUMA, гиперпотоковость, мультипроцессоры (SMP) и многоядерность (CMP).

CPU ZLib

Данный целочисленный тест оценивает комбинированную производительность центрального процессора и подсистемы памяти при помощи свободной библиотеки для сжатия данных ZLib. ЦП ZLib использует только основные инструкции x86, но поддерживает гиперпотоковость, мультипроцессоры (SMP) и многоядерность (CMP).

CPU AES

Этот целочисленный тест оценивает производительность центрального процессора при выполнении шифрования по криптоалгоритму AES. В шифровании AES - это симметричный алгоритм блочного шифрования. Сегодня AES используется в нескольких инструментах сжатия, таких как 7z, RAR, WinZip, а также в программах шифрования BitLocker, FileVault (Mac OS X), TrueCrypt. CPU AES использует соответствующие инструкции x86, MMX и SSE4.1, он является аппаратно ускоренным на процессорах VIA C3, VIA C7, VIA Nano и VIA QuadCore, поддерживающих технологию VIA PadLock Security Engine, а также на процессорах, поддерживающих расширение наборов команд Intel AES-NI. Данный тест поддерживает гиперпотоковость, мультипроцессоры (SMP) и многоядерность (CMP).

CPU Hash

Этот целочисленный тест оценивает производительность центрального процессора при выполнении алгоритма кэширования SHA1 согласно Федеральному стандарту обработки информации 180-4. Код для этого теста написан на языке ассемблера, он оптимизирован для большинства популярных вариантов ядер процессоров AMD, Intel и VIA путем применения соответствующих расширений набора команд MMX, MMX+/SSE, SSE2, SSSE3, AVX, AVX2, XOP, BMI и BMI2. Тест CPU Hash является аппаратно ускоренным на процессорах VIA C7, VIA Nano и VIA QuadCore, поддерживающих технологию VIA PadLock Security Engine.

FPU VP8

Этот тест измеряет производительность сжатия видео кодеком Google VP8 (WebM) версии 1.1.0. Происходит кодирование за 1 проход видеопотока с разрешением 1280x720 («HD ready ») и скоростью 8192 кбит/с при максимальных настройках качества. Содержимое кадров генерируется модулем фракталов Жюлиа FPU. Программный код теста использует расширения и наборы команд MMX, SSE2, SSSE3 или SSE4.1, а также поддерживает гиперпотоковость, мультипроцессоры (SMP) и многоядерность (CMP).

FPU Julia

Этот тест оценивает производительность в операциях одинарной точности с плавающей запятой (32-битная точность) посредством вычислений нескольких фрагментов фрактала Жюлиа. Код для этого теста написан на языке ассемблера, он оптимизирован для большинства популярных вариантов ядер процессоров AMD, Intel и VIA путем применения соответствующих расширений набора команд x87, 3DNow!, 3DNow!+, SSE, AVX, AVX2, FMA и FMA4. FPU Julia поддерживает гиперпотоковость, мультипроцессоры (SMP) и многоядерность (CMP).

FPU Mandel

Этот тест оценивает производительность в операциях двойной точности с плавающей запятой (64-битная точность) путем моделирования нескольких фрагментов фрактала Мандельброта. Код для этого теста написан на языке ассемблера, он оптимизирован для большинства популярных вариантов ядер процессоров AMD, Intel и VIA путем применения соответствующих расширений набора команд x87, SSE2, AVX, AVX2, FMA и FMA4. FPU Mandel поддерживает гиперпотоковость, мультипроцессоры (SMP) и многоядерность (CMP).

FPU SinJulia

Тест оценивает производительность в операциях повышенной точности с плавающей запятой (80-битная точность) посредством вычислений по каждому отдельному кадру с использованием модифицированного фрактала Жюлиа. Код для этого теста написан на языке ассемблера, он оптимизирован для большинства популярных вариантов ядер процессоров AMD, Intel и VIA, позволяет использовать тригонометрические и экспоненциальные инструкции архитектуры x87. FPU SinJulia поддерживает гиперпотоковость, мультипроцессоры (SMP) и многоядерность (CMP).

    AIDA64EXTREME

    Тип лицензии :

    Крякнутая

    Языки :

    Windows 8, 8 64-bit, 7, 7 64-bit, Vista, Vista 64-bit, XP, XP 64-bit

    Скачано :

Тестирование производительности

AIDA64 предполагает наличие несколько тестов, используемых для определения производительности отдельных агрегатов оборудования или полной системы в целом. Такие тесты относят к разряду синтетических, способных оценить теоретическую наивысшую производительность системы. Тестирование пропускных возможностей памяти, самого центрального процессора или же FPU-блоков происходит на базе системы тестирования AIDA64, способной поддерживать до 640 потоков обработки одновременно, а также десяток групп процессора. Осуществляется поддержка гиперпотоковых и мнгоядерных технологий, также мультипроцессоров - SMP.

Система AIDA64 даёт возможность за счёт отдельных тестов проводить оценку пропускной способности считывания, записи, копирования и торможения кэша. Ко всему этому прилагается модуль-тест, позволяющий оценить работу накопительных устройств, в частности жестких дисков (S)ATA или SCSI, SSD-накопителей, RAID-массивов, карт памяти, оптических дисков, и USB-накопителей.

Тестирование качества работы GPGPU

Эта тестовая панели располагает набором тестов OpenCL GPGPU. Доступ к этой функции вы можете получить в разделе Сервис/Тест GPGPU. Благодаря им оценивают вычислительную производительность с использованием различных нагрузок OpenCL. Каждый отдельно взятый тест можно проходить на 16-ти графических процессорах, в том числе процессорах NVIDIA, AMD и Intel, или же их комбинировать. Несомненно, идёт полная поддержка конфигураций CrossFire, SLI, APU и dGPU. В целом такая функция позволяет определить уровень производительности любой вычислительной техники, предоставленной в качестве графического процессора устройств OpenCL.

AIDA64 проводит не только комплексные тесты, но и микротесты, которые есть в разделах "Тесты"/ "Страница". За счёт полной базы данных показатели можно сравнивать с аналогичными по другим конфигурациям.

Тестирование уровня производительности памяти

Такие тесты предлагают оценку наивысшей пропускной способности при осуществлении таких задач, как чтение, записывание и копирование. Написаны на языке ассемблера и оптимизированы под самые популярные ярда процессоров - VIA, AMDи Intel. Здесь применяются расширенные наборы команд: SSE, SSE2, SSE4.1, 8x86/x64, x87, 3DNow!, MMX, MMX+ и AVX, AVX2.

Кроме того, тест позволяет оценить задержку памяти, что происходит из-за считывания процессором данных из памяти системы. Задержка памяти являет собой время, на протяжении которого идёт передача данных в регистре целочисленной арифметики процессора после того, как происходит выдачи команды для считывания.

Целочисленный тест CPU Queen

Этот простой тест оценивает, как идёт работа по предсказанию ветвлений центрального процессора и осуществляется ошибочный прогноз ветви. Происходит выдача решений для головоломки с 8 ферзями, расположенными на шахматной доске 10х10. Учитываем теорию: если тактовая частота одинакова, тот процессор, который обладает более укороченным конвейером и у которого более низкий уровень накладных расходов, в результате ошибочного прогноза ветвления способен показать лучшие результаты теста. К примеру, отключая гиперпотоковость, Pentium 4 на основе Intel Northwood получит баллы выше, чем Intel Prescott. Это происходит потому, что в первом процессоре есть 20-ступенчатый конвейер, а в последнем - 31-ступенчатый. Целочисленные оптимизации CPU Queen - MMX, SSE2, SSSE3.

CPU PhotoWorxx

Представленный целочисленный тест даёт возможность установить производительность процессора на основе алгоритмов обработки двухмерных фото. С довольно крупными изображение RGB происходит следующее:

  • заполнение рисунка пикселями цветом, выбранным случайно;
  • поворот картинки против часовой стрелки на 90 градусов;
  • разворот изображения на 180 градусов;
  • дифференцирование изображения;
  • превращение пространства цветов, что может использоваться, к примеру, при преобразовании формата JPEG.

Тестпредназначе в основном для блоков арифметики SIMD-архитектуры главного процессора и существующих подсистем памяти. Наборы указаний CPU PhotoWorxx имеют следующие расширения: x87,MMX, MMX+,AVX, AVX2, 3DNow!, 3DNow!+, SSE, SSE2, SSSE3, SSE4.1, SSE4A, а также идёт поддержкаNUMA, мультипроцессоры (SMP), гиперпотоковость, и многоядерность (CMP).

CPU ZLib

Предложенный целочисленный тест даёт комбинированную оценку производительности главного процессора и подсистемы памяти благодаря сжатию данных ZLib. Инструкции применяются основные x86, но поддержка гиперпотока, мультипроцессоры (SMP) и многоядерность (CMP).

CPU AES

Представленный целочисленный тест оценивает производительность главного процессора при выполнении шифровки по криптоалгоритму AES (симметричному алгоритму шифрования по блокам). На сегодня AES используют в нескольких инструментах сжатия: 7z, RAR, WinZip. Применяют и в программных шифровках TrueCrypt, BitLocker, FileVault (Mac OS X). Инструкции следующие: x86, MMX и SSE4.1. Система аппаратно ускорена на процессорах VIA C3, C7, Nano и QuadCore, с технологиями поддержки VIA PadLock Security Engine. Применима и для процессора с набором команд Intel AES-NI. Идёт поддержка гиперпотоковости, мультипроцессоры (SMP) и многоядерности (CMP).

CPU Hash

Этот целочисленный тест определяет производительность центрального процессора за счёт алгоритма кэширования SHA1 в соответствии с Федеральным стандартом обработки данных 180-4. Код выполнен на языке ассемблер и оптимизирован под основные ядра AMD, Intel и VIA с учётом использования следующего набора команд SSE2, SSSE3, MMX, MMX+/SSE, AVX, AVX2, XOP, BMI, а также BMI2. Тест CPUHash - ускорен аппаратно на процессорах VIA C7, VIA Nano и VIA QuadCore, которые могут использовать технологию VIA PadLock Security Engine.

FPU VP8

Данный тест проводит анализ сжатия видео кодеком Google VP8 (WebM) по версии 1.1.0. Осуществляется кодировка за 1 проход видеопотока, имеющего расширение 1280x720 и идущего со скоростью 8192 кбит/с (с учётом максимально настроенного качества). Составляющие кадров генерируются при помощи модуля фракталов Жюлиа FPU. Здесь применяется следующие расширения и наборы команд: MMX, SSE2, SSSE3 или SSE4.1. Тут также поддерживается мультипроцессоры (SMP), многоядерность (CMP) и гиперпотоковость.

FPU Julia

При помощи этого теста оценивают производительность операций одинарной точности (с плавающей частотой для 32-битной системы). Происходит вычисление нескольких кусочков фрактала Жюлиа. Используют тот же язык, подходит под ядра AMD, Intel и VIA с использованием таких наборов команд: x87, 3DNow!, 3DNow!+, SSE, AVX, AVX2, FMA и FMA4. Поддержка аналогичная.

FPU Mandel

Операции двойной точности с плавающей запятой для 64-битной точности тестируют при помощи FPUMandel. Осуществляется моделирование частей фрактала Мандельброта. Язык тот же, процессоры такие же, поддержка, как и в предыдущих тестах. Набор команд: FMA и FMA4, x87, SSE2, AVX, AVX2,

FPU SinJulia

Тест проводит оценку операций повышенной точности с плавающей запятой (80-битная система). Вычисления делаются по каждому взятому кадру с применением фрактала Жюлиа(модифицированного). Язык - как и в предыдущих вариантах, ядра те же, использование тригонометрических и экспоненциальных инструкции архитектуры x87. Поддерживает гиперпотоковость, многоядерность (CMP) и мультипроцессоры (SMP).

Быстрый процессор - это великолепно! Однако факторов, влияющих на быстродействие процессора, достаточно много. Попадаются люди, которые меряют скорость исключительно в гигагерцах - чем больше, тем лучше. Те, кто поопытнее, обычно оценивают производительность процессора либо по специальным тестам, либо по тому, как он справляется с обработкой информации в реальных приложениях, требующих больших объемов вычислений (3D-графика, сжатие видеофильмов и т.п.). С учетом того, что большинство современных приложений и игр требуют огромного количества вычислений именно над вещественными числами (числа с плавающей точкой), то общая производительность процессора зависит от того, насколько быстро он их обрабатывает. Для этих целей в процессоре существует специальный модуль, получивший название Floating-Point Unit (FPU) - модуль вычислений с плавающей точкой. В то же время производительность этого модуля зависит не только от рабочей частоты процессора, но и от его конструктивных особенностей.

В начале эволюции IBM-совместимых компьютеров вычисления над вещественными числами брал на себя математический сопроцессор, конструктивно выполненный отдельно от центрального процессора. Однако уже в 486-м процессоре Intel применила встроенный модуль вычислений с плавающей точкой, значительно увеличив при этом скорость работы процессора с вещественными числами. Впоследствии на встроенный FPU перешли и другие производители процессоров для персональных компьютеров.

Отметим, что при работе с вещественными числами существует тот же нюанс, что и в целочисленных операциях - команда не может быть выполнена за один такт ядра процессора (смотрите статью "Зачем процессору конвейер", "КВ" № /2003). И если в 486-х процессорах для обработки целочисленных команд уже начал использоваться пятиступенчатый конвейер, то FPU был по-прежнему не конвейерного типа, т.е. следующая команда с плавающей точкой всегда должна была дожидаться выполнения предыдущей. Это существенно тормозило работу процессора с мультимедийными приложениями. А последние в то время уже начали стремительно набирать обороты в своих "запросах". Поэтому вполне естественно, что Intel, начиная с процессоров Pentium, стала применять конвейер не только в целочисленных, но и в вещественных операциях. Корпорация AMD, в свою очередь, пошла по несколько иному пути - вместо конвейеризации FPU она начала внедрять в свою продукцию технологию 3DNow!, которая также была направлена на повышение производительности в операциях с вещественными числами. Эта технология столкнулась с множеством проблем в своей реализации. Думаю, многие помнят, как AMD K6-2, призванный конкурировать с Pentium II в целочисленных операциях, на процентов тридцать отставал от него в обработке вещественных чисел.

Но, как говорится, на ошибках учатся, поэтому в Athlon"ах и последующих процессорах корпорация AMD перешла на конвейерный тип FPU. Более того, в новых процессорах AMD применила в модуле вычислений с плавающей точкой не только суперконвейеризацию, но и суперскалярность - в одном процессоре стало располагаться, грубо говоря, три модуля FPU, каждый из которых принимает участие в вычислениях с плавающей точкой. Другими словами, с выходом процессоров Athlon/